(1)

International Baccalaureate ${ }^{\circledR}$
Baccalauréat International
Bachillerato Internacional

MATHEMATICS

HIGHER LEVEL
PAPER 3 - SETS, RELATIONS AND GROUPS
Friday 4 November 2011 (morning)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 20]
(a) Consider the following Cayley table for the set $G=\{1,3,5,7,9,11,13,15\}$ under the operation \times_{16}, where \times_{16} denotes multiplication modulo 16 .

\times_{16}	1	3	5	7	9	11	13	15
1	1	3	5	7	9	11	13	15
3	3	a	15	5	11	b	7	c
5	5	15	9	3	13	7	1	11
7	7	d	3	1	e	13	f	9
9	9	11	13	g	1	3	5	7
11	11	h	7	13	3	9	i	5
13	13	7	1	11	5	j	9	3
15	15	13	11	9	7	5	3	1

(i) Find the values of $a, b, c, d, e, f, g, h, i$ and j.
(ii) Given that \times_{16} is associative, show that the set G, together with the operation \times_{16}, forms a group.

(Question 1 continued)

(b) The Cayley table for the set $H=\left\{e, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, b_{4}\right\}$ under the operation $*$, is shown below.

$*$	e	a_{1}	a_{2}	a_{3}	b_{1}	b_{2}	b_{3}	b_{4}
e	e	a_{1}	a_{2}	a_{3}	b_{1}	b_{2}	b_{3}	b_{4}
a_{1}	a_{1}	a_{2}	a_{3}	e	b_{4}	b_{3}	b_{1}	b_{2}
a_{2}	a_{2}	a_{3}	e	a_{1}	b_{2}	b_{1}	b_{4}	b_{3}
a_{3}	a_{3}	e	a_{1}	a_{2}	b_{3}	b_{4}	b_{2}	b_{1}
b_{1}	b_{1}	b_{3}	b_{2}	b_{4}	e	a_{2}	a_{1}	a_{3}
b_{2}	b_{2}	b_{4}	b_{1}	b_{3}	a_{2}	e	a_{3}	a_{1}
b_{3}	b_{3}	b_{2}	b_{4}	b_{1}	a_{3}	a_{1}	e	a_{2}
b_{4}	b_{4}	b_{1}	b_{3}	b_{2}	a_{1}	a_{3}	a_{2}	e

(i) Given that * is associative, show that H together with the operation * forms a group.
(ii) Find two subgroups of order 4.
(c) Show that $\left\{G, \times_{16}\right\}$ and $\{H, *\}$ are not isomorphic.
(d) Show that $\{H, *\}$ is not cyclic.
2. [Maximum mark: 10]
(a) Determine, using Venn diagrams, whether the following statements are true.
(i) $A^{\prime} \cup B^{\prime}=(A \cup B)^{\prime}$
(ii) $\quad(A \backslash B) \cup(B \backslash A)=(A \cup B) \backslash(A \cap B)$
[6 marks]
(b) Prove, without using a Venn diagram, that $A \backslash B$ and $B \backslash A$ are disjoint sets.
3. [Maximum mark: 6]

Show that the set, M, of matrices of the form $\left(\begin{array}{ll}a & 0 \\ 0 & \frac{1}{a}\end{array}\right), a \in \mathbb{R}^{+}$, forms a group under
matrix multiplication.
4. [Maximum mark: 14]

The group G has a subgroup H. The relation R is defined on G by $x R y$ if and only if $x y^{-1} \in H$, for $x, y \in G$.
(a) Show that R is an equivalence relation.
(b) The Cayley table for G is shown below.

	e	a	a^{2}	b	$a b$	$a^{2} b$
e	e	a	a^{2}	b	$a b$	$a^{2} b$
a	a	a^{2}	e	$a b$	$a^{2} b$	b
a^{2}	a^{2}	e	a	$a^{2} b$	b	$a b$
b	b	$a^{2} b$	$a b$	e	a^{2}	a
$a b$	$a b$	b	$a^{2} b$	a	e	a^{2}
$a^{2} b$	$a^{2} b$	$a b$	b	a^{2}	a	e

The subgroup H is given as $H=\left\{e, a^{2} b\right\}$.
(i) Find the equivalence class with respect to R which contains $a b$.
(ii) Another equivalence relation ρ is defined on G by $x \rho y$ if and only if $x^{-1} y \in H$, for $x, y \in G$. Find the equivalence class with respect to ρ which contains $a b$.
5. [Maximum mark: 10]

Consider the functions $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Show that if both f and g are injective, then $g \circ f$ is also injective.
(b) Show that if both f and g are surjective, then $g \circ f$ is also surjective.
(c) Show, using a single counter example, that both of the converses to the results in part (a) and part (b) are false.

